Cubic rational curve as a set of pairs of conjugated points
نویسندگان
چکیده
منابع مشابه
Inflection points and singularities on planar rational cubic curve segments
We obtain the distribution of inflection points and singularities on a parametric rational cubic curve segment with aid of Mathematica (A System of for Doing Mathematics by Computer). The reciprocal numbers of the magnitudes of the end slopes determine the occurrence of inflection points and singularities on the segment. Its use enables us to check whether the segment has inflection points or a...
متن کاملRational Points on Cubic Surfaces
Let k be an algebraic number eld and F (x0; x1; x2; x3) a non{singular cubic form with coeecients in k. Suppose that the pro-jective cubic k{surface X P 3 k given by F = 0 contains three coplanar lines deened over k, and let U (k) be the set of k{points on X which does not lie on any line on X. We show that the number of points in U (k), with height at most B, is OF;"(B 4=3+") for any " > 0.
متن کاملThe rational points of a definable set
Let X ⊂ R be a set that is definable in an o-minimal expansion of R. This paper shows that, in a suitable sense, there are very few rational points of X that do not lie on some connected semialgebraic subset of X of positive dimension. 2000 Mathematics Subject Classification: 11G99, 03C64
متن کاملCounting Rational Points on Cubic Hypersurfaces
Let X ⊂ P be a geometrically integral cubic hypersurface defined over Q, with singular locus of dimension 6 dimX − 4. Then the main result in this paper is a proof of the fact that X(Q) contains Oε,X(B ) points of height at most B.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Časopis pro pěstování matematiky a fysiky
سال: 1908
ISSN: 1802-114X
DOI: 10.21136/cpmf.1908.123009